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Malware family labels and key features used for the decision-making of Android malware detection models
fall short of precise comprehension of malicious behaviors due to their coarse granularity. To solve these
problems, in this article, we first introduce the concept of the malicious behavior trajectory (MBT) and propose
an innovative approach called ProMal. ProMal aims to automatically generate malware descriptions with
fine granularity through extracted MBTs from malware for users. Specifically, a labeled dataset of MBTs is
constructed through substantial human efforts to build a behavioral knowledge graph (BxKG). The BxKG is
scalable and can be automatically updated using two strategies to ensure its completeness and timeliness:
(1) taking into consideration the evolution of Android SDKs and (2) mining new MBTs by leveraging the
widely-used malware datasets. We highlight that the knowledge graph is essential in ProMal, which can
reason new MBTs based on existing MBTs because of its structured data representation and semantic relation
modeling, and thus helps effectively extract real MBTs in Android malware. We evaluated ProMal on a recent
malware dataset where researcher-crafted malware descriptions are available, and the Precision, Recall, and
F1-Score of MBT identification based on BxKG reached 96.97%, 91.43%, and 0.94, respectively, outperforming
the state-of-the-art approaches. Taking MBTs identified from Android malware as inputs, precise, fine-grained,
and human-readable descriptions can be generated using the large language model, whose readability and
usability are verified through a user study. The generated descriptions play a significant role in interpreting
and comprehending malware behaviors.
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1 Introduction

Android malware, specifically designed to infiltrate Android devices, poses significant security
threats to millions of users worldwide. As Android malware becomes more prevalent, the need
for effective detection approaches to protect users and their devices grows. Different approaches
including machine learning-based [3, 4, 7, 8] and deep learning-based approaches [13, 64] have
been proposed to detect Android malware. While these approaches have shown promising accuracy
in identifying malware, they struggle with limited comprehension of their malicious behaviors
[26, 37, 41, 54].

There is a growing need for advanced and explainable techniques that offer detailed explanations
for identified malware. Taint analysis [5], shows promise in explaining specific malicious behaviors
such as sensitive data leakage by utilizing dataflow but is limited in scope, focusing on common
malicious behaviors. Combining machine learning models with explainable Al techniques (e.g.,
Drebin [4], LIME [41], LEMNA [19], and XMal [54]) can predict key malicious behaviors based on
extracted key features used for the decision-making of detection models. However, these approaches
have some limitations. (1) For Drebin, the key features for decision-making are completely dependent
on the training data, and the impact of each feature on the classification is fixed after the model
training is complete, leading to inability to adapt to the dynamic nature of malicious behaviors
in malware. (2) Compared with Drebin, although LIME and LEMNA are model-agnostic, they
leverage linear or simple models to approximate the local part of the original complex model,
inevitably missing crucial features that may also play a vital role in predicting malicious behaviors.
(3) For XMal, the reliability of key features relies on the robustness of the underlying machine
learning models, which can lead to inaccurate or unstable results if the models lack robustness.
Moreover, the above work is not able to provide a detailed explanation of how malicious behavior
is executed. While XMal attempted to describe the execution of malicious behavior by sorting
malware operations that constitute the malicious behavior, the ordering rules it uses are predefined
based on the experience of manual analysis of malicious behaviors, neglecting the control flow and
dataflow of malware. This means the generated explanation may deviate from the real execution of
malware.

In conclusion, these machine learning-based approaches are unreliable since the key features
used to predict primary malicious behaviors may not be complete or accurate, as well as a lack
of an adequate analysis of interrelations between different malware operations that indicate the
specific implementation process of malicious behavior, preventing a comprehensive understanding
of malware. For example, as shown in Figure 1, although the intermediate result of XMal contains
three malware operations (i.e., “Access the Internet,” “Collect IMSL,” and “Activated by Boot”), it
could not present a significant malicious behavior of leaking data until relations between malware
operations are taken into account and they are ordered as “Activated by Boot— Collect IMSI— Access
the Internet” as described in Description 2. Besides, XMal misses key malware operations (i.e.,
Missing downloading and collecting IMEI and SMS messages) and introduce incorrect malware
operations (i.e., “Collect location”).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 196. Publication date: August 2025.


https://doi.org/10.1145/3715909

Beyond Decision: Android Malware Description Generation 196:3
Description | :
Family Adrd Family Label | > Android.Adrd is a Trojan horse in Adrd malware family that steals
Classification 4 information from Android devices.
URL.openConnection  Key Features @ Description 2 :
READ_PHONE_STATE (@Access the Internet ©Launch with system startup, @ collect T Missing downloading and
XMal RECEIVE BOOT COMPLETED Collect location or info on the device and @send it to |~ jjoling IME & SMs
2 LocationManager.request = sl T remote server over the interner, |- -CeETESOTE
HttpURLConnection.getResponseCode ©Activated by BOOT location error from incorrect feature extraction
TelephonyManager.getSubscriberld downloading & IMEI & SMS error from missing feature extraction
Malicious behavior trajectories (MBTs) @ Description 3 :
Access the Internet H Save resource to a local file I @ When the device is started(RECEIVE_BOOT_COMPLETED) the
Monitor malware performs the following malicious operations: it saves the
ProMal boot ? Get IMSI H Get IMEI H Access the Internet | E> collected resources (InputStream.read(); OutputStream.write()) to a
?’ local file via the Internet (URL.openConnection()); it then @ obtains
Query SMS messages H Access the Internet | the device’s IMSI(TelephonyManager.getSubscriberld(),
READ_PHONE_STATE), IMEI( TelephonyManager.getDeviceld(),
READ_PHONE_STATE), @reads the text message (Content
S ity Malware Description: Activate when the mobile device is booted up. Resqlvehquery()), and Ieak.s the»data (URL.f)penConnection()) it
ecurity Access the Internet and download | components. Steals some obtains to the Internet. This series of behaviors may lead to user
Report information (IMEI , IMSI, and SMS ) and sends to a remote server. privacy and sensitive information leakage.

Fig. 1. An example of malware profiling result of ProMal compared with family classification and XMal.

To overcome these limitations in the existing approaches, we aim to design a new approach to
effectively profile the malicious behaviors of Android malware, however, encounter the following
challenges: C1: The existing granularity of malware family labels and key features is too coarse
to accurately profile malicious behaviors. They fail to capture the relations among independent
operations, which are crucial for understanding and interpreting malware behaviors. Consequently,
the primary challenge lies in devising fine-grained representations of malicious behaviors that are
specifically tailored for accurate interpretation. This is vital because malicious behaviors typically
consist of various operations, necessitating a thorough analysis of their interrelations for effective
interpretation. C2: A major obstacle in developing a fine-grained representation of malicious
behaviors is the absence of a widely-recognized and adequately labeled dataset for such a detailed
representation. This shortage significantly hinders the accurate profiling of malicious behaviors.
Therefore, there is an urgent requirement to carefully design and create a well-labeled dataset
tailored to this advanced behavior representation. This endeavor is particularly challenging due
to its time-consuming and resource-intensive nature, requiring the specialized skills of experts
for in-depth analysis of real-world malware samples. C3: Although it is feasible to design and
construct fine-grained representations using a limited set of sampled behaviors, it is still insufficient
due to the dynamic nature of malicious behaviors in malware. Therefore, a significant challenge
lies in developing a scalable methodology that can automatically reason about new operations
as they emerge. C4: Compared to code-level features, fine-grained representations offer more
informative insights. However, there is still a notable semantic gap between these detailed behavioral
representations and their translation into human-readable malware descriptions. Bridging this gap
presents a distinct challenge.

To this end, we propose a knowledge graph-based approach named ProMal to generate precise,
fine-grained, and human-readable behavior descriptions of Android malware. Specifically, to address
C1, we first define a novel concept of malicious behavior trajectory (MBT), which will be used
to help empower our approach to profile malware by identifying independent malware operations
as well as their execution relations and further narrow down the semantic gap between code-level
representation and behavior description. Based on the design of MBT, to address C2, we first
take substantial human efforts to label MBTs of malware. In particular, we collected hundreds of
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representative malware samples along with high-quality expert-crafted reports in different ways.
Although these reports have precise malware descriptions, the labeling process is also a non-trivial
task due to the need for verifying MBTs through a comprehensive code review, which requires
more than two man-months of effort. Such a human-labeled dataset of MBT is further used to build
a behavioral knowledge graph (BxKG), where nodes may present specific malware operations
or code-level features that are used to implement these malware operations and each edge refers to
the relation between two entities represented by nodes, e.g., the call relation between a malware
operation and its relevant API, or the request relation between API and permission. To address C3,
to adapt to the dynamic and ever-changing nature of Android malware, on the one hand, we use a
knowledge graph to present MBTs, which is essential because it can help reason variant MBTs based
on the original ones. On the other hand, we further design two innovative strategies to dynamically
augment and update the initial BxKG. Specifically, we consider the evolution of Android software
development kits (SDKs) based on the official documents and, meanwhile, propose self-updating
to automatically update the initial BxKG based on the widely-used malware datasets, including
Genome [66], Drebin [4], AMD [51], and GP Malware [6]. To address C4, we use MBTs as well
as their corresponding code-level features as the input presentations of large language models
(LLMs), which significantly mitigates the problem of the semantic gap that occurred in the previous
works. The example of extracted MBTs and generated description by ProMal is shown in Figure 1,
which achieves the best performance of malware profiling compared with family labels and XMal.

To demonstrate the effectiveness of ProMal, we conducted a series of experiments. Firstly, we
evaluated MBT extraction on 105 real-world malware samples from the GP Malware dataset [6]. We
spent one month manually labeling the MBTs in these samples based on their corresponding expert-
crafted reports. The experimental results indicated that ProMal achieved Precision, Recall, and F1-
Score of 96.97%, 91.43%, and 0.94 respectively in MBT extraction. Meanwhile, when compared with
the state-of-the-art approach XMal [54], ProMal outperformed with a 0.35 higher F1-Score on 121
malware samples. Secondly, we demonstrated the real impact of self-updating and graph reasoning
on MBT extraction, which established the necessity of knowledge graph construction. Thirdly,
we evaluated the contribution of different individual components in ProMal. The experimental
results unveiled that the completion of call graph (CG), the analysis of control flow, the analysis
of dataflow, and the reasoning capability contribute 0.97%, 75.95%, 6.82%, and 13.52% Precision
improvements in MBT extraction on our experimental dataset, respectively. Note that, despite
the completion of the CG, which resulted in only a modest 0.97% improvement in Precision, it
significantly increased the Recall by 22.86%. Last but not least, ProMal can explain how malicious
behaviors are executed with the help of malware descriptions generated by LLMs like GPT-3.5 [32]
according to these extracted MBTs, whose readability and usability are further verified through
a user study. The study showed that malware descriptions generated by ProMal have an average
satisfaction score of 9.67, while descriptions generated by XMal and baseline have an average score
of 3.37 and 6.32.

In summary, we made the following contributions:

— We proposed ProMal based on the constructed BxKG, which achieves precise, fine-grained,
and human-readable malware descriptions, and outperforms the state-of-the-art approach in
profiling malware.

— We proposed a new concept of MBT and manually constructed a human-labeled dataset from
four different resources, including 399 malware samples along with well-labeled malicious
behavior trajectories, which takes three man-months of effort.

— We proposed two novel methods to dynamically and automatically update the build knowledge
graph based on SDK evolution and widely used malware datasets in the wild.
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— We have released the relevant data on GitHub [2]. Meanwhile, we are currently in the pro-
cess of rolling out all the capabilities of malware profiling through an online service (see
Section 6.3).

Lastly, it is important to note that ProMal is specifically designed to analyze and profile malicious
behaviors within identified Android malware. While existing machine learning and deep learning-based
methods can achieve very high detection accuracy, often surpassing 99%, users may still have doubts
about the reliability of classification results. This is where ProMal comes in. ProMal’s application
scenario is to further analyze and dissect malicious behavior of malware after high-performance
malware detection tools have identified the software as malicious. Moreover, since our analysis is
conducted on samples that have been pre-verified as malware, the likelihood of encountering such false
positives is significantly reduced. This precondition also ensures that the MBTs extracted from malware
are more likely to represent actual malicious behaviors rather than benign operations mistakenly
flagged as malicious. Consequently, it requires an Android malware as an input rather than an
unlabeled one during our profiling process.

2 Overview
2.1 Malware Operation

In the field of mobile security, a malware operation refers to the action or activity performed by
malware on infected devices, e.g., “Get contact information,” “Send SMS messages,” or “Obtain root
privileges on the device.” In other words, malware operations are operations required to execute
malicious behavior. In the prior work [48], malicious behaviors are classified into 12 categories,
such as privacy stealing, abusing SMS/CALL, remote control, etc. If a piece of malware intends to
steal users’ private information, it should generally at least perform two operations sequentially:
data collection and data transmission.

Since malware operations are usually implemented by coding, we take three types of code-level
features into account to represent them in this article:

(1) Manifest Information: Android malware often requests unreasonable or unnecessary permis-
sions, such as reading contacts (READ_CONTACTS) or accessing the network (INTERNET).
Also, Intent may contain essential information to identify malware operations. For example,
android.intent.action.USER_PRESENT may be used to monitor the device screen.

(2) API Call: Android malware may invoke specific APIs to execute malware operations, such as
sending SMS messages (SmsManager.sendTextMessage()) or establishing a network connection
(URL.openConnection()).

(3) String Constant: Some string constants as API parameters may also serve as a crucial role
for spotting malware operations. For example, “accessibility_enabled” and “android_id”,
constants of Secure.getInt(), determine the actual use of this API, namely whether it is to
check the enabled status of accessibility services on the device or to obtain the unique
identifier of the device.

Most importantly, given that the ultimate goal of our work is to generate fine-grained and
human-readable behavioral textual scripts for Android malware that explain why an Android app
is classified as malware, to bridge the gap between code-level features and malware behavioral
descriptions, annotating malware operations with behavioral semantic tags is a viable solution. As
shown in Figure 2, there are two tags corresponding to two malware operations: “Get user’s phone
number” (belonging to data collection) and “Access the Internet” (belonging to data transmission).
And the relevant code-level features of malware operations are listed below their respective tags.
Note that some of these tags are manually summarized from expert analysis reports, while others

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 196. Publication date: August 2025.



196:6 C.Wuet al.

( ) ( )
Get user’s phone number [ Access the Internet
READ_PHONE_STATE INTERNET
TelephonyManager.getLine | Number() URL.openConnection()

Collect user’s phone number and leak
Fig. 2. An example of MBT that demonstrates privacy stealing (i.e., phone number).

are automatically generated during the knowledge graph update process using LLMs based on
detailed functional descriptions of code-level features from the Android developer documentation
(see Section 5).

22 MBT

It is emphasized in the Introduction that interrelations among malware operations are crucial to
the understanding of malware at a finer level, since a sequence of malware operations can indicate
the detailed execution process of malware’s malicious behaviors step by step. Considering malware
operations, their code-level features, as well as their relations with each other, we describe malicious
behavior using MBT, based on which we can generate expected behavioral descriptions of Android
malware.

Definition 1. Definition 1. Formally, MBT is defined as an ordered list of malware operations,
ie, O ={o; — 0, = ---0;--- — 0,}, representing the complete sequential execution process of
malicious behavior, where each malware operation o; (1 < i < n) corresponds to a step within this
process. Most importantly, each malware operation is assigned a semantic tag that indicates its
functionality and is linked to the code-level features that implement the operation in code, such as
API calls, Permissions, Manifest Intents, and String Constants.

Figure 2 illustrates a case of a MBT, i.e., “Get user’s phone number — Access the Internet,” which
represents the malicious behavior that collects and leaks the user’s phone number, comprising two
distinct malware operations. Specifically, the operation “Get user’s phone number” is implemented
by the API “TelephonyManager.getLinelNumber()” and the permission READ_PHONE_STATE. The
collection of these code-level features is partly determined during the manual labeling of MBTs from
reports (see Section 3) and partly updated through the BxKG self-updating process (see Section 5).

When compared with existing concepts such as API call sequence or subgraph used in the
previous works [27, 33, 49], the MBT shows two differences: (1) Specifically designed to represent
the execution process of malicious behavior, constructed initially based on manually analyzed
malware reports. It is a targeted sequential set aimed at addressing the understanding of malicious
behaviors. Unlike existing approaches that extract sensitive API sequences or subgraphs—which
often introduce numerous irrelevant APIs that do not contribute to malicious operations—these
methods frequently fail to accurately and effectively pinpoint the sensitive APIs within a malware
sample that trigger malicious behavior, leading to an incomplete understanding of the malicious
behaviors. This issue is underscored in our experiments in Section 7.1.1. In contrast, the MBT
specifically targets malicious behaviors that align with our objectives, providing a more precise and
meaningful representation of the malware execution process, thereby making it more effective for
use in LLMs to generate accurate descriptions of these behaviors. (2) Carries a stronger semantic
meaning. Each malware operation is assigned a semantic tag that indicates its function and is linked
to corresponding code-level features (shown in Figure 6). By ordering these malware operations
sequentially, MBT helps bridge the gap between source code and natural language. In Section 7.4,
we compared the results of generating descriptions using only code-level features as input to LLMs
with those generated using MBTs along with their corresponding code-level features. The results

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 196. Publication date: August 2025.



Beyond Decision: Android Malware Description Generation 196:7

demonstrated that descriptions based on MBTs were more readable and accurate because MBTs
provide a clearer and more structured representation of malicious behaviors, enhancing the overall
quality and precision of the generated descriptions.

2.3 Motivating Example

Figure 1 illustrates the limitations of existing approaches that profile malware and generate malware
descriptions. For family classification, users can only obtain a short and extremely coarse-grained
text related to the malware family (i.e., Adrd), thus they only know that information will be stolen
from Android devices but are unaware of the specific information being stolen. Unlike malware
family classification, XMal [54], a machine learning-based approach, can extract key features
(e.g., APIs and permissions) from malware and then match these features with simple semantics.
After that, each semantic will be converted into a brief description (e.g., “Activated by Boot” is
transformed into “Launch with system startup”), which will be further arranged and combined into
a more complete description (as indicated in Description 2) according to ordering rules defined by
authors. However, XMal has the following shortcomings: (1) The extracted key feature might be a
false positive (i.e., LocationManager.request()) since their reliability is determined by the robustness
of the underlying machine learning models, leading to an error in malware operation detection
(i.e., “Collect location”). (2) XMal only considers several key features, which may not cover the
complete range of malicious behaviors. In other words, it may lose other key features that are also
helpful for understanding malware. For example, the lack of API TelephonyManager.getDeviceld()
and permission READ_SMS leads to the failure of malware operation identification of “Get IMEI”
and “Query SMS messages”, respectively, which is also the key to interpreting the malicious behavior
(reflected in the security report). (3) As mentioned in the Introduction, malware operations and
their relations can detail the execution process of malicious behavior. However, XMal determines
these relations based on heuristics, ignoring the specifics of individual malware instances, which
raises concerns about the accuracy of the analysis of malicious behavior.

To address these limitations, we propose an effective approach called ProMal, which can au-
tomatically extract MBTs from Android malware and describe them in a human-readable way
to inform users of malicious behaviors and remind users of potential security threats in detail.
As shown in Figure 1, ProMal performs well in MBT extraction, i.e., it not only performs well in
malware operation detection but also accurately captures relations between malware operations.
When compared to the ground truth, the description generated by ProMal are semantically close
and comprehensive. Additionally, it can generate more precise and informative descriptions than
XMal or family classification.

In conclusion, our approach attempts to achieve the following design goals:

— Precise and Fine-Grained: The approach should precisely identify MBTs from malware, which
has richer semantic information in terms of understanding malware behaviors.

— Scalable: The approach is designed to be scalable and capable of addressing various types of
malware and variants, especially adapting to the rapid iteration of malware.

— Human-Readable: The malware description should be easily readable, facilitating user accep-
tance and understanding of how malicious behaviors are implemented.

2.4 Architecture Overview

Figure 3 illustrates an overview of BxKG construction and ProMal, BxKG construction consists of
the following three major phases: MBT Labeling is to manually label MBTs from expert-crafted
security reports of malware samples. Knowledge Graph Construction is to build a BxKG based
on the labeled MBTs. Knowledge Graph Update is to automatically update the initial BxKG to
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Fig. 3. An overview of BxKG construction and ProMal. The new MBTs, highlighted in pink, are the product
of graph reasoning. The red circles (d’ and f’) represent that the malware operation of this node can be
accomplished by other code-level features. The red solid node x represents the new node derived from
widely-used malware datasets and the new MBTs, highlighted in green, are augmented by self-updating.

Table 1. The Two Datasets of Security Reports Used for
Manual Analysis and MBT Extraction

Source MALRADAR Anonymous Center
# of Reports 178 100

# of Malware 4,535 100

# of Families 148 23
Collection time  2014-2021 2008-2018

ensure the scalability of ProMal. ProMal takes an Android malware as an input and outputs a
human-readable malware description based on the extracted MBTs along with relevant features
from the pre-constructed BxKG.

3 MBT Labeling
3.1 MBT Labeling from Malware Reports

Currently, there are no credible and high-quality labeled MBTs available. Therefore, we first collected
278 well-maintained security reports from MALRADAR [48] and our long-standing industry partner
(i.e., Anonymous National Computer Emergency Center) for manual labeling. The details of the
datasets are shown in Table 1. MALRADAR [48] harvested 178 superior security reports that
contained sufficient details about malware (e.g., their malicious behaviors) and provided at least
one IoC (e.g., MD5 or SHA256). Importantly, these security reports were selected from leading
security companies (e.g., TrendMicro, Kaspersky, and McAfee) launched by AV-Comparatives [1].
Afterwards, malware samples, published between 2014 and 2021, were collected according to the
IoCs given in these reports. In addition, the industry partner provided us with 100 expert analysis
reports, each corresponding to malware that was released between 2008 and 2018. Specifically,
4,635 (4,535 + 100) malware samples related to these security reports belong to 170 (148 + 23-1)
malware families in total since one family label was repeated. Consequently, these reports provide
a wide range of malicious phenomena, making them an appropriate source of data for us to label
malware operations as well as MBTs. Next, we carried out the following steps:
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Information in The Security Report © Preliminary Extraction
Malware operation: Get user’s phone number
Part of Malware Description: API prototype: android.telephony.TelephonyManager

. N ;->getLine | Numb
This malware attempted to get user’s phone number getLinel Number()

and upload it. @ Official Documentation Verification

getLine|Number
android.telephony.TelephonyManager

Corresponding Code Snippet:

PUb“C_ static String getPhoneNumber(Context argl) { Warning: This method was deprecated in APl level 33.
String vI_1; e . : . Use SubscriptionManager#getPhoneNumber(int) instead.
vI_I = argl getSystemService(“phone”).getLine | Number().trim(); API Descriptions: Returns the phone number string for line I.

“Get user’s phone number” Requires Permission: READ_SMS , READ_PHONE_NUMBERS ,
that the caller is the default SMS app, or that the caller has carrier
privileges for any API level. READ _PHONE_ STATE for apps

new Thread(new Runnable()) {
public void run() {

try { ing SDK API level 29 and bel
new Connect().getHttpConnection(String.valueOf(vl _1);) fargeting eve and below.
) “upload” © Malware Operation Labeling
catch(Exception vI_1) {

Malware operation: Get user’s phone number
’ API: android.telephony.TelephonyManager.getLine | Number()

} Updated API: android.telephony.SubscriptionManager
} ;-> getPhoneNumber()
} API life cycle: APl level | —API level 33
return vI_I; API functionality: Returns the phone number string
} Required permission: READ_PHONE_STATE

Fig. 4. An example of labeling malware operations and verifying the accuracy of code-level features with the
official documents from Google Android Developers. Verification information is highlighted in blue.

3.1.1 Operation Identification and Code-Level Feature Extraction. By meticulously reviewing
these reports, we can initially identify malware operations and relevant code-level features (de-
scribed in Section 2.2) based on malware descriptions and code snippets provided by reports. The
effectiveness of MBT depends on the precision of the code features. However, the mapping between
malware operation and its code-level features may not be accurate enough in these reports. For
example, sometimes only the method name of the API can be obtained. Considering that other
APIs with the same method name may exist, a complete API prototype (including package name,
class name, method name, etc.) that can identify the unique API, is necessary. Furthermore, in some
cases, even the method name cannot be determined because of obfuscation. As a solution to these
problems, malware samples are decompiled into Java source codes using JADX [46], which also
provides anti-confusion capabilities. After getting the API prototype from the source code, we then
query the Google Android Developers documentation for: (1) collecting more details about the API
to build a richer knowledge base, such as its functionality, required permissions, evolution, and life
cycle; (2) ensuring the API precisely aligns with the reported malware operation and establishes a
relation with them; and (3) optimizing the malware operation’s tag to make it more concise and
accurate if possible.

As shown in Figure 4, the malware description indicates two malware operations, i.e., “get user’s
phone number” and “upload,” and we can locate relevant APIs (framed with boxes) in the code
snippet. Take the first API named “getLineNumber” as an example, we can get it with a more
complete representation (i.e., TelephonyManager.getLine1Number()) from the malware’s source code.
Next, according to the official documentation, we can learn that there is a call relation between this
API and the malware operation “Get user’s phone number” since this API returns the phone number
string. Meanwhile, there is a request relation between this AP and READ_PHONE_STATE. Note
that, HttpURLConnection is a class used to handle HTTP connections rather than an API. Since
this class is obtained through URL.openConnection(), which can return an instance representing
a connection to the remote object referred to by the URL, we consider that malware can upload
information using URL.openConnection(), and we update the malware operation’s tag from “upload”
to “Access the Internet” to make the malware operation and the API more consistent.
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Fig. 5. An example of relation construction between malware operations. The final execution relation is
determined by a reachability analysis between APIs corresponding to the extracted malware operations.

3.1.2  Relation Construction between Malware Operations. Malware operations and the order in
which they are executed are the key components of an MBT. Therefore, we also need to extract
the execution relations between malware operations from the reports. Unfortunately, sometimes
the relations are missing or too complicated to be directly extracted. In addition, the execution
process described in the reports may deviate from the actual one. In order to obtain a more accurate
execution relation between malware operations rather than relying solely on reports, we perform a
time-consuming manual analysis to build a reliable knowledge base. We first assess the execution
order based on descriptions provided in reports, and then refer to the analysis results from some
mature tools (e.g., Androguard and FlowDroid) to help determine the exact relations between
different malware operations. Specifically, we use Androguard to generate CGs and control flow
graphs (CFG) of malware, and then investigate the inter-procedural control flow graphs (ICFG)
to trace the execution paths of malware operations through an examination of dependencies among
their corresponding APIs.

As illustrated in Figure 5, based on the identified malware operations and APIs, we locate APIs in
ICFG and perform reachability analysis. Since there is a path from TelephonyManager.getLine1Num-
ber() to URL.openConnection(), the execution relation between the two malware operations can be
determined and the MBT is “Get user’s phone number — Access the Internet,” where “—” indicates
the order of execution.

3.1.3  Consistency Check and Collaborative Revision. In light of the risk of malicious operations
loss and relational misinterpretation due to manual analysis, three co-authors conducted cross-
verification after each author had completed their independent annotations. Any conflict in the
results was promptly resolved during the whole process.

Finally, we collected a set of human-labeled MBTs, including malware operations and relevant
precise code-level features. In addition, these labeled data are used to construct the BxKG (see
Section 4).

4 Knowledge Graph Construction

A knowledge graph is a structured representation of knowledge that interconnects entities and
concepts through well-defined relations [10, 20, 21, 31, 35]. Entities are specific objects or things,
such as “Albert Einstein” and “Theory of Relativity.” Concepts are abstract ideas or categories like
“Scientist” and “Scientific Theory.” The knowledge graph captures both entities and their semantic
relations within a specific domain, facilitating reasoning, inference, and knowledge discovery by
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leveraging the graph’s structure. For example, a knowledge graph might link “Albert Einstein”
(entity) to “Theory of Relativity” (entity) with the relation “developed” Knowledge graphs are
employed to integrate information from various sources, providing a unified framework for data
analysis and decision-making processes.

In this article, we utilize a knowledge graph to model malicious behaviors, and each malware
operation in the graph is characterized by three distinct types of code-level features: permissions
and Intent from the manifest file, API calls, and string constants introduced in Section 2.2. The
constructed graph is a BxKG.

4.1 BxKG

The BxKG is a directed labeled graph defined as BxKG = (V. E, f, g), where V is the set of nodes and
E C VXV is the set of directed edges indicating relations between two nodes. Each node v € V is as-
signed a label from the set of node labels Ly = {Malware Operation, API, Permission, Intent, String
Constant}. The labeling function f : V' — Ly maps each node to its corresponding label. Similarly,
each edge e € E is assigned a label from the set of edge labels Lg = {call, request, proceed, register,
align, input}, defined by the labeling function g : (Ly X Ly) — Lg. The label of the edge will be
determined according to the label of two nodes. Specifically:

—Request: e.g., an API may request a permission.

— Call: e.g., a malware operation may call an APL

— Proceed: e.g., one malware operation may proceed to another operation in execution order.
— Register: e.g., a malware operation may register an intent.

— Align: e.g., two APIs may execute in parallel to achieve the same malicious operation.

— Input: e.g., a string constant used as input to an APL

A triplet (n;, e, nj) is used to represent two nodes and the directed edge between them, where
nin; € Vand e € E, indicating that there is a relation e from node n; to node n;. The labeling
functions f : V. — Ly and g : (Ly XLy) — T map nodes to their respective types and determine the
edge type based on the types of the connected nodes. For example, if f(n;) = Malware Operation
and f(n;) = Malware Operation, the labeling function g(f(n;), f(n;)) determines that the edge
label of e should be “proceed.” Then this triplet (n;, e, n;) can therefore be described in natural
language as “after completing n;, the malware proceeds to execute n;”

4.2 Graph Construction Using Labeled MBTs

We construct the BxKG using labeled MBTs, which consist of various malware operations and
their relations. As shown in Figure 6, there are five types of entities (i.e., graph nodes): malware
operation, API, permission, Intent, and string constant which we can all extract from the collected
MBTs. As for relations (i.e., graph edges) between two entities, they are also determined according
to MBTs, such as the execution relation between “Get user’s phone number” and “Access the Internet,
or the request relation between TelephonyManager.getLineINumber() and READ_PHONE_STATE.
Figure 6 shows a part of the initial BxKG. During this process, different MBTs will be connected
by the common malware operations, e.g., “Access the Internet” The ability of graph reasoning is
additionally demonstrated in the generation of new MBTs during the construction process of BxKG.
For example, a new MBT involves the following behaviors including “Get IMEI”—“Access the
Internet”—“Download,” which was augmented by two initial MBTs (i.e., ® “Get IMEI”—“Access the
Internet” @ “Access the Internet”—“Download”).
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Fig. 6. An example of graph construction using three MBTs. There are four types of entities, i.e., malware
operations, API, permission, Intent, and string constant.

4.3 Knowledge Augmentation for Initial BxKG

4.3.1 Manual Augmentation. Utilizing the gathered MBTs, we have built an initial version of
BxKG. However, due to the limited number of security reports (i.e., 278 reports) that we used to
construct a human-labeled dataset of MBTs, the code-level features describing malware opera-
tions may not be comprehensive. Particularly, APIs with analogous functionalities might be used
interchangeably to perform similar malware operations. To address it, we attempt to manually
incorporate a broader range of functionally analogous or even equivalent APIs by referring to public
resources (e.g., Stack Overflow, GitHub) to enrich the comprehensiveness of the BxKG. For example,
by referring to the Android Developer documents for API openConnection().getInputStream(), it can
be found that this API links to another APL, i.e., URLConnection.getInputStream(), that performs
the same functionality. Consequently, we update URLConnection.getInputStream() as a new API
feature into the BxKG and establish a parallel relation between this updated API and the API
openConnection.getInputStream().

4.3.2 Automated Augmentation. Moreover, certain APIs will adjust as the SDK version is updated.
Specifically, the method name or parameters of some APIs will be replaced, deprecated, or altered,
e.g., API DevicePolicyManager.resetPassword() has been deprecated in API level 30 and was replaced
by DevicePolicyManager.resetPasswordWithToken(). As a result, BxKG might not be able to recognize
malware operation efficiently when it is implemented by calling the latest API. Consequently, BxXKG
should also be continuously updated rather than fixed. To address this issue, we propose a method
based on crawler technology to automatically update the initial BxKG in response to API changes
during SDK updates by targeting the Android Developer documentation. As shown in Algorithm 1,
the algorithm starts by loading a list of target API URLs (marked in the MBT labeling process),
which point to the API description web pages in the official website, and a set of pattern matching
rules to detect changes in APIs. These patterns include:
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resetPassword Added in API level 8
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Fig. 7. The deprecation mark detection in automated augmentation. The captured web page, a screenshot
from the official website, shows that there was a deprecation along with a caution box alerting the user.

— Method Signature Change Detection: A pattern Psignarure is used to detect changes in method
signatures, including the class name, method name, and the number or types of parameters. The
pattern is represented as Psignarure = Class_Name.Method_Name(Param_Type;,Param_Type;,
...), where both the renaming of the methods and any change in the parameter list (addition
or removal of parameters) will trigger the detection method.

— Deprecation Tag Detection: When a deprecation occurs, the deprecated API level and the
replacement information of the new API (if any) will be explicitly mentioned on the web
page, we thus can use different regular expressions to extract the deprecated API level, the
new API (if any) and its URL from the web page’s source code. The pattern Pgeprecation =
Regular_Expressions (Deprecated_API_Level,New_API,New_API_URL), as shown in
Figure 7.

For each fetched web-page content, we applied these predefined pattern matching rules to
identify any modifications or deprecations. When an API change is detected, the algorithm extracts
the relevant key information (e.g., method’s signature, API level at which the change occurred,
APT’s description, URL pointing to the AP etc.) and integrates it into BxKG. A new API will be
added to BxKG if an API has been replaced or deprecated in the latest version, while the old API
will be marked as deprecated. To ensure that BxKG stays continuously updated, a periodic task is
created to run the crawling and updating process on a regular basis.

Meanwhile, we randomly sampled 100 sensitive APIs from BxKG and examined them for changes.
A manually constructed ground truth was used to investigate the accuracy of our crawler technology
method. The results show that 83% of the sensitive APIs remained unchanged, 11% were deprecated,
and 6% had signature changes. Our method achieved 100% accuracy on these 100 sampled APIs to
detect these changes, successfully identifying all signature changes and deprecated APIs, which
includes deprecation levels and alternative APIs (if any).
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Algorithm 1: Automated Augmentation of BxKG
Input: url_list: List of API URLs;
patterns: Pattern matching rules;
kg_current: Current BxKG.
Output: kg_updated: Updated BxKG with latest API information.
1 kg_updated <« kg_current

2 foreach url € url_list do

3 content « FetchContent(url)

4 detected_changes «— @

5 foreach pattern € patterns do

6 matches <« ApplyPattern(content, pattern)
7 if matches found then

8 L detected_changes.add(matches)
9 foreach change € detected_changes do
10 if change is a modification then

1 L kg_updated.modify(change)

12 if change is a deprecation then

13 L kg_updated.deprecate(change)
14 if change is a new API then

15 L kg_updated.add(change)

// Set a periodic task to execute the algorithm regularly for continuous updates
16 Schedule periodic execution of this algorithm
17 return kg_updated

Subsequently, APIs adapted to different APIlevels will be extracted and added to the initial BxKG.
As a result, this dynamic updating mechanism allows BxKG to accommodate a greater variety of
malware operations, even when they are implemented by APIs from different SDK versions. In the
initial BxKG, the APIs are from API Level 30 or even earlier. However, with continuous updates
in Android SDK versions, the API Level has now advanced to at least 33. Therefore, taking API
Level 30 as the baseline, we observed the API changes in the graph after automated augmentation
and verified whether these APIs were up to date by referring to Google Development Documents.
Figure 8 illustrates the performance of automated API augmentation. The horizontal lines in the
figure represent the API levels. For example, API TelephonyManager.getLinelNumber() was added
to the SDK at API Level 1 but was deprecated at API Level 33 and replaced by SubscriptionMan-
ager.getPhoneNumber(). It is clear that the APIs on the initial BxKG are dynamically changing and
can be automatically updated, ensuring that BxKG can adapt to malware under various Android
SDK versions.

5 Knowledge Graph Update

As constructed using a limited set of labeled MBTS, it also poses a challenge for identifying MBTs
composed of new malware operations since they are absent from the initial BxKG. To resolve this
problem, we propose an automated method called self-updating, which allows the initial BxKG to
automatically enlarge its scale, thereby assisting in the discovery of future MBTs.
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Fig. 9. Three cases that may be encountered when using control-flow analysis for relation search.

5.1 Generation of Code-Level Features for Malware

As mentioned in Section 2.2, code-level features are important indicators for identifying malware
operations. Therefore, the first step is to obtain them from malware. Taking the malware as input
and using Androguard, we can extract all the permissions that the malware is applying for and
parse Intent from the AndroidManifest.xml file, and obtain all sensitive APIs in CG. In addition,
when analyzing malware, it is important to understand the relations between different sensitive
APIs, because it can map the relation between malware operations.

The relations between APIs can be divided into three distinct cases summarized from our in-depth
observation as illustrated in Figure 9. Let len(P(4 p)) be the shortest path length from nodes A to B.
Assuming that we need to find the relation between API; and API;, and the method is a common
caller method (direct or indirect) of API; and API, whose CFG is used to determine relations. Three
cases that may be encountered during relation extraction can be formalized as follows: (a) Two
APISs are called directly by method, i.e., len(P(method, aP1,)) = len(P(method, ar1,)) = 1; (b) Two APIs
are called indirectly by method, i.e., len(P(method, apr,)) > 1 & len(P(method, ar1,)) > 1); and (c)
Only one API is called directly in method, i.e., (Ien(P(method, apr)) > 1 & len(P(method, APL)) =
1)|(len(P(method, APIl)) =1& len(P(method, APIZ)) >1).

From CG, we can learn which methods directly or indirectly call sensitive APIs. However, for
the specific call order of APIs, we need to use CFG, which is composed of basic blocks (BBs)
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connected by control flow edges. Assuming that we need to establish the call order between the
two objects (either sensitive API or user-define method) within the CFG, we proceed as follows:
@ If two objects reside within the same BB, the objects in the front position are called first since
the statements in the block are executed sequentially. ® If two objects are located in different BBs,
their order is determined by analyzing the control dependencies between these two blocks, i.e., the
object in the controlling block (staring point of the control flow edge) is called before the object in
the controlled block (ending point of the control flow edge). If the blocks are not reachable, the two
objects are considered to be called in parallel.

As for (a), both APIs are called by the same method, therefore, we can directly determine the
relation between these APIs in the common caller method’s CFG. For (b) and (c), the issue lies in
the fact that the common caller method may invoke an API through multi-layer methods, making
it not feasible to directly establish the relations between two APIs in its CFG. To address this issue,
we trace back along the call edges in CG from these APIs to find methods that are directly invoked
by the common caller method, such as method; and method; shown in Figure 9. Then we record
the mapping between APIs and found methods, and replace the position of the methods in the
common caller method’s CFG using corresponding APIs, so as to directly determine the relations
between two APIs in the CFG. By traversing all sensitive APIs (including those identified by [57]
and those confirmed during manual labeling in Section 3.1) on the CG and using CFG to calculate
the relations between sensitive APIs in real time, we can ultimately construct a dependency graph
of sensitive APIs (i.e., SADG).

Meanwhile, since there is no interface available to extract string constants that determine the
specific use of APIs from malware, for each sensitive API that requires a constant string constant,
we will look at the CFG (also through Androguard) of the method that calls this API to check
whether this string constant actually used by this APL If so, the string constant will be integrated
into this sensitive API node on the SADG. As a result, the SADG assists us in narrowing down the
scope of malware operations identification and relation search rather than the entire code within
the Android bytecode program.

5.1.1 Completion of CG. The construction of the CG serves as the foundation for updating the
BxKG and identifying the MBTs in this work. Particularly, the accuracy of the CG directly impacts
the ability to capture program flows, thus influencing the extraction of the relations between
sensitive APIs. Many existing studies rely on Androguard for generating CGs and CFGs [27, 33, 49,
57, 61]. However, we found some limitations in Androguard’s default CG construction, particularly
in handling Android-specific event-driven and callback mechanisms—critical aspects for accurately
capturing program flow. Given the importance of CG completeness for our analysis, we addressed
the gaps in Androguard’s CG generation by improving it at four key points: (1) lifecycle callback
methods, (2) event-driven callback methods, (3) asynchronous calls, and (4) inter-component
communication (ICC) relations [9].

Firstly, we utilize Androguard to construct an initial CG based on invocation statements. Sub-
sequently, for the discontinuity of lifecycle callback methods in CG, we introduce a virtual main
method named “dummyMain” for each Android component (e.g., Activity, Service, Broadcast Re-
ceiver, and Content Provider). Within this method, we establish invocation edges between lifecycle
callback methods according to the order specified by the Android development documentation.
Next, to handle the discontinuity of event-driven callback methods, we utilize FlowDroid [5] to
collect callback methods within each Android component. Referring to the callback methods results
of FlowDroid, we can add invocation edges to CG. As for asynchronous calls, based on the prede-
fined invocation rules (as shown in Table 2), we first capture statements related to asynchronous
operations (e.g., Thread.start() and AsyncTask.execute()). These statements are further analyzed to
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Table 2. Calling Convention of Asynchronous Calls

Class Calling Convention
execute() — onPreExecute()
android.os.AsyncTask — doInBackground()
— onPostExecute()
java.lang.Runnable start() — run()
java.lang.Thread start() — run()

android.os.Message  sendMessage() — handleMessage()

identify the caller and the actual callee. Subsequently, invocation edges between the caller and the
callee are dynamically created and added to the CG, thus representing asynchronous call relations.
For example, in the statement “Thread t = new Thread(new MyRunnable()),” the caller is identified
as Thread.start(), while the parameter type specified during the creation of the Thread instance
is MyRunnable. From this, the actual callee is inferred to be the MyRunnable.run(). In the case of
AsyncTask, type analysis is performed to locate its specific implementation class, allowing identi-
fication of other lifecycle methods (e.g., doInBackground(), onPreExecute(), and onPostExecute()).
Invocation edges are then added between these lifecycle methods. This approach helps the CG
obtain the implicit relations inherent in asynchronous calls. Finally, our analysis leverages existing
analysis [24, 60] to identify ICC relations, which include explicit intents (e.g., startActivity()) and
implicit intents resolved through attributes such as action or category. Using these data, we map
the invoking methods in source components to the lifecycle entry points (e.g., onCreate(), onStart())
of the target components. By adding edges that represent both explicit and inferred implicit ICC
relations, we dynamically enhance the CG to capture the communication flow between components,
ensuring a comprehensive representation of the application’s behavior.

For example, in some cases, the malware first calls API TelephonyManager.getDeviceld() to retrieve
the device’s IMEI and then calls API AsyncTask.execute() to start a asynchronous task. Therefore,
we can get a execution flow from TelephonyManager.getDeviceld() to AsyncTask.execute(). However,
it is unknown what this asynchronous task is and how this device information will be handled
since the specific task are usually performed in the method doInBackground() of AsyncTask, while
there is no call edge between AsyncTask.execute() and doInBackground() in initial CG. Therefore,
in this case, we add the missing edge (i.e., between AsyncTask.execute() and doInBackground()) to
the initial CG. In the method dolnBackground(), the malware sends the collected data to a remote
server using HttpURLConnection.connect(), thus we can get the complete execution flow (i.e., from
TelephonyManager.getDeviceld() to HttpURLConnection.connect()) and deduce that the malware will
leak the device ID. Our enhanced CG construction ensures that the CG accurately captures the
entire execution flow of malware by introducing virtual edges.

5.2 Update of Knowledge Graph

As shown in Figure 10, based on the SADG generated by both CFG and CG, along with the initial
BxKG, new graph entities and relations, contributing to new MBTs, could be extracted and then
inserted into the initial BxKG. The self-updating takes widely-used malware samples as inputs and
leverages the following three modules to automatically update the initial BxKG.

— Relation Analyzer: Applied to extract new relations between entities.
— Entity Miner: Used to mine new entities including code-level features and malware operations.
— KG Updater: Responsible for integrating new entities and relations into the current BxKG.
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Fig. 10. Overview of self-updating.

We have implemented the self-updating in 2K lines of Python code. Figure 10 provides an
overview of how the initial BxKG is updated through the above three modules. In this work, we
update the BxKG using sources such as Genome [66], Drebin [4], AMD [51], and GP Malware [6].
Meanwhile, users also have the flexibility to incorporate their own malware datasets for updating
purposes.

5.2.1 Relation Analyzer. The input for this module is widely used malware samples, from which
we can extract SADGs for them as described in Section 5.1. A comparison with APIs in malware
operations of BxKG and their relations will yield a subgraph of SADG (denoted as sub-SADG). Using
SADG for relation extraction and API selection (relating to malware operation) is primarily driven
by the following considerations. As malicious behavior is typically formed by multiple operations
in succession, the new malware operation may be an extension or subsequent trigger operation of
the existing MBT. It may be reasonable to introduce the new malware operation if there is evidence
of a correlation or dependence between the proposed malware operation and the known MBT, and
this relation can be proven by program analysis (i.e., based on SADG). In light of this premise, by
linking it with the existing MBT, we will also be able to represent the full picture of the MBT more
completely, which will improve our ability to detect and understand malicious behavior.

Specifically, for each leaf node (called checked API) in sub-SADG, check whether it has immediate
successors or predecessors in SADG. If it has successors, the checked AP, its successors, and the
relation between them will be entered into the Entity Miner. If it has a predecessor, we need to
further investigate whether at least one of its ancestors can reach this predecessor. If so, the checked
AP], the predecessor, the ancestor, and their relations will all act as the input of the Entity Miner.
One special case is when there are two sensitive APIs on SADG that exist in BxKG, but the relation
between them in SADG is absent from BxKG. This indicates that the malicious behavior pattern
composed of these two APIs is lacking in BxKG. As the data (e.g., relevant malware operation,
requested permission) pertaining to these two APIs already recorded by BxKG, this missing relation
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between APIs can be directly input into the KG Updater. With this selective strategy, we can find
sensitive APIs that could potentially be used for malicious purposes and avoid blindly adding
irrelevant APIs. In addition, we can capture the relations that exist between sensitive APIs.

5.2.2  Entity Miner. From the Relation Analyzer, we learn which sensitive APIs may contribute
to building new malware operations. In this module, we aim to mine as complete entities (as defined
in Section 4.1) as possible so as to prepare for the update of the current BxKG. On the one hand,
code-level features are associated with the detection of malware operations. On the other hand,
the semantics of code-level features are related to the semantics of newly introduced malware
operations, which ultimately affects the quality of the final malware description. Therefore, firstly,
for each of the extracted sensitive APIs that do not exist in the current BxKG, we will query its
required permissions through an interface (i.e., “load_api_specific_resource_module()”) provided
by Androguard. Next, both the API and permissions will be further used to model a new malware
operation. To determine the tag (i.e., semantics) of new malware operation, we attempt to query
the descriptive text of each API or permission from the Android Developer documents to obtain
their semantics. And then the semantics of these features will be automatically summarized by a
LLM (e.g., GPT-3.5 [32]), which can identify the core actions, recognize the object, and combine
them into a concise phrase. Finally, the novel mapping between features and malware operation
will act as the output of Entity Miner and be input into the KG Updater. By adopting this approach,
we can make the representation of malware operations as accurate and comprehensive as possible
so that they can be consistent with expert reports.

5.2.3 KG Updater. With a reasonable relation derivation and malware operation representation,
the effectiveness of BxKG updates can be assured to some extent. The relation between malware
operations can be mapped from the relation between their corresponding sensitive APIs. As for
the input directly comes from the Relation Analyzer, we add a “proceed” relation between existing
malware operations on the BxKG based on the missing relation between two sensitive APIs on
SADG. For the entities (including malware operations and their features) and relations entered by
the Entity Miner, we add the new malware operation and its relations between existing malware
operations, which forms a new MBT, as well as the relations between it and its code-level features.
Note that, before inserting an API or a permission into BxKG, it is necessary to check whether they
have been on the initial BxKG. If they do not exist in the BxKG, we proceed with adding them.

Figure 11 gives an example to illustrate how we step-by-step add new graph entities and relations:
(1) Relation Analyzer: First, we generate the sensitive API dependency graph (i.e., SADG) of input
malware sample, from which we can identify sensitive APIs and relations between them defined by
BxKG through comparing SADG and BxKG, thus generating the sub-SADG mentioned in Figure 10,
ie., “A; > Ay — As,” where A, (n =1, 2, 3) represents a sensitive APL Next, we can find the new
sensitive API (absent from BxKG) that connects to both the leaf node and non-leaf node of sub-
SADG, i.e., Ay: AccountManager.getAccounts(), which acts as the cornerstone of self-updating and
will be input into the Entity Miner. (2) Entity Miner: Afterwards, the permission that this input API
needs to request, i.e., GET_ACCOUNTS, will be queried via an interface provided by Androguard.
Based on the usage of AccountManager.getAccounts() is “Lists all accounts visible to the caller
regardless of type” and the explanation of GET_ACCOUNTS is “Allows access to the list of accounts
in the Accounts Service,” ChatGPT summarizes these semantics, identify the core actions (i.e.,
“List”), recognize the object (i.e., “all accounts”), and combine them into a concise phrase. As a result,
a new malware operation tagged “List all accounts” is created with AccountManager.getAccounts()
and GET_ACCOUNTS as code-level features. (3) KG Updater: As relations between “List all accounts”
and other malware operations can be mapped from the corresponding API sequence, a new MBT
is constructed, i.e., “Request permission — List all accounts — Send SMS messages.” Finally, the
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Fig. 11. Example of self-updating.

newly constructed MBT and the code-level features (including AccountManager.getAccounts() and
permission GET_ACCOUNTS) of new malware operation will be inserted into BxKG.

Finally, our BxKG after self-updating comprises approximately 1,000 entities (including 347
malware operations, 622 code-level features) and 1,500 relations (including 554 relations between
malware operations, 347 relations between malware operations and APIs, and 574 relations between
code-level features), covering a diverse range of MBTs. The detailed results of the self-updating are
shown in Section 7.2.1 (Evaluation of the Expansion of BxKG through the Self-updating).

Following the self-updating, we identified 2,119 meaningful MBTs within BxKG, encompassing a
variety of malicious behavior types. Referring to the classification of malicious behaviors in [48], we
categorized these MBTs into their 12 categories. The distribution of MBTs across different categories,
considering overlaps, is as follows: “Aggressive Advertising” and “Privacy (Data) Stealing” each
make up 19.4% of the MBTs. “Abusing SMS/CALL” follows with 18.7%, and “Stealthy Downloading”
accounts for 15.3%. “Tricky Behavior” comprises 10.6%, while “Privilege Escalation” and “Abusing
Accessibility” together make up 6.2%. Other categories include “Remote Control” at 4.0%, “Premium
Service” at 2.2%, “Miner” at 0.8%, “Ransom” at 0.7%, and “Bank/Financial Stealing” at 0.5%. It is
important to note that there is overlap among these categories, meaning that a single MBT could
be classified under multiple categories.

6 Malware Profiling Based on ProMal
6.1 Extraction of MBTs

An MBT mainly consists of malware operations and relations between them. Thus, the first step
to generate MBTs is to map the code-level features (i.e., manifest information collected from
AndroidManifest.xml file and sensitive APIs extracted from SADG) of given malware to malware
operations defined by the BxKG via pattern matching. After malware operation identification,
relations between identified malware operations will be queried based on both BxKG and SADG to
construct potential MBTs. Additionally, to ensure that the extracted MBTs about privacy leakage
are as close as possible to the program’s real execution, these relations will be filtered by dataflow
analysis.

6.1.1 Malware Operation Detection and Relations Matching. Firstly, because SADG contains all
sensitive APIs invoked by malware, we first remove sensitive APIs that have not been labeled by
BxKG and the relations (start with this API or end with this API) associated with these APIs from
SADG. Next, as mentioned in Section 2.2, features of malware operations include APIs, permissions,
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Fig. 12. Overview of generation of MBTs based on BxKG.

Intent, and string constants, which are key metrics for determining whether a certain malware
operation was performed. Specifically, a malware operation is only considered to be detected
when all its features are matched by the malware’s code-level features. As shown in Figure 2, the
malware operation “Get user’s phone number” consists of two features. If both of them exist in
the extracted code-level features, it can be assumed that the malware will attempt to obtain the
user’s telephone number. Based on identified malware operations, their relations on SADG that
potentially contribute to MBTs can be checked using the BxKG. If the relation between malware
operations mapped from SADG differ from BxKG, this relation will be deleted, such as the relation
from Os to O4 shown in Figure 12. In addition, the MBTs associated with privacy leakage will be
further verified through dataflow analysis, without which a false positive might occur.

6.1.2 Additional Verification. Considering that relying solely on control-flow dependencies
without dataflow tracking may not effectively distinguish between legitimate and malicious API
calls, potentially leading to a high false-positive rate, especially when identifying these MBTs that
indicate privacy leakage, we further refine the relations between APIs based on Flowdroid’s [5]
taint analysis. In FlowDroid, a Source typically refers to the input point of sensitive information,
and common Sources include APIs used to obtain sensitive user data, such as reading location data
(i.e., LocationManager.getLastKnownLocation()). A Sink, on the other hand, represents the output
point of the data, often involving potentially dangerous operations, such as transmitting personal
data over a network or writing it to a file (i.e., FileOutputStream.write()). By using static analysis,
FlowDroid detects potential leakages of sensitive information from Source to Sink. Notably, we
select those APIs related to privacy leakage from our BxKG and then utilize them as supplements to
FlowDroid’s Sources and Sinks API list. In particular, we do not inspect if there is dataflow between
all APIs but only screen for APIs related to information leakage to improve the efficiency of this
verification. During this step, we filter out the Sources and Sinks APIs that lack data dependencies.
Consequently, corresponding relations between APIs are also excluded. For example, in the process
from dataflow analysis to the output of the final MBTs, O, and its relation with O; will be deleted as
illustrated in Figure 12. In this step, we filter out relations extracted from malware that are related
to data leakage but do not actually have data dependencies, to enhance the accuracy of relation
extraction.
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Fig. 13. An example of malware description generated by LLM based on extracted MBT and code-level
features.

6.2 Description Generation

While MBTs offer a rich semantic understanding of malware, their technical nature can be still
difficult for non-technical users to fully grasp. To make this information more accessible, we propose
generating natural language descriptions of these malicious behaviors through LLMs (i.e., GPT-3.5
[32]). Given the need to translate technical details into accessible explanations, we employ a Chain-
of-Thought prompting approach [53]. This method systematically guides LLMs through the process
of generating detailed descriptions based on the extracted MBTs, simulating human reasoning by
presenting a series of structured questions that help break down and explain the key aspects of
malware behavior. This prompting approach consists of four parts: (1) Preamble: The Preamble
provides the description and context of the task to guide the LLM. In our task, the Preamble ensures
that the LLM understands the objective of generating a clear and accessible description of malware
behavior from the MBTs, focusing on making the explanation more understandable to users. (2)
One-shot Example: A concrete demonstration is given to show how to analyze each step of MBTs.
This helps the LLM adhere to the reasoning process and ensures consistency in how it approaches
the task. (3) Task Input: The task input consists of the MBTs along with their associated code-level
features. (4) Chain of Thoughts: In this step, the LLM is guided through a sequence of structured
questions designed to capture all critical aspects of the MBTs. These questions ensure that the LLM
fully comprehends the malware operations, the underlying logic of each operation, and how these
operations together form a coherent malicious behavior.

As shown in Figure 13, a detailed illustration of how the input MBTs map to the generated output
was given. On the left side of Figure 13, we provide the MBT consisting of three malware operations
and two relations indicating the execution order, along with the relevant APIs and permissions of
each malware operation. The right side shows the corresponding coherent and detailed description,
which is generated by the LLM based on the input. For instance, it first describes the malware
collects device location (correspond to “Collect location data”) and user’s location (correspond to
“Access GPS coordinates”), and then sends them to a remote server via Internet (correspond to
“Access the Internet”), showing the potential privacy violations. The technical details, i.e., APIs
and permissions of malware operations, have been highlighted in blue and pink. Additionally, we
can find that the malware description explains how the malware steals privacy information in an
accurate, informative, and readable way.

6.3 Online Service of ProMal

To make the work more useful to the Android mobile security community, we developed
and have been maintaining an online website to provide the capabilities of ProMal. As shown
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Fig. 14. The online website of ProMal.

in Figure 14, an automatic analysis of malicious programs will begin once the user uploads
the file.

7 Experimental Evaluation
7.1 Evaluation on MBT

To evaluate the MBT used in ProMal, (1) we conducted the first experiment to assess the necessity
of the MBT by comparing with several existing approaches that focus on extracting sensitive API
call subgraphs and sequences; (2) the second experiment is to investigate whether the extracted
MBTs through ProMal match a human-labeled testing dataset based on security reports; and (3) we
compared the capability of MBT extraction with a state-of-the-art approach.

Note that, these experiments were all conducted using the updated BxKG.

Dataset. We used the dataset comprising 105 Android malware from the GP Malware [6] to
observe the performance of MBT extraction in ProMal. These applications penetrated the official
Android Google Play Store between January 2016 and July 2021. In particular, these 105 malware
samples were selected from 105 distinct families, which makes it possible to test whether our
approach is universal. Additionally, detailed and manual reports of each sample are provided by
Cao et al. [6], from which we labeled malware operations and MBTs by using the same method
introduced in Section 3.1 to build the human-labeled testing dataset for this experiment. Finally,
we manually labeled 122 MBTs in total.

It is important to note that this dataset is distinct from the Android malware dataset employed for
the self-updating process, as well as the manually labeled dataset of 278 malware samples for graph
construction in Section 3.1.
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Table 3. Statistics of Subgraph, Sequences, and MBT Quantities across SeGDroid,
S3Feature, LSCDroid, and ProMal

Metric SeGDroid S3Feature LSCDroid MBT
Average nodes per subgraph  7,045.57 7.03 N/A N/A
Average edges per subgraph  11,118.37 8.20 N/A N/A
Average subgraphs per APK 1 945.53 N/A N/A
Average sequences per APK N/A N/A 1,013.67 N/A
Average APIs per sequence N/A N/A 5.156 N/A
Average MBTs per APK N/A N/A N/A 1.26

7.1.1  Evaluation of MBT Necessity on Human-Labeled Testing Dataset. To assess the necessity of
the MBT, we replicated and analyzed several existing methods that focus on extracting subgraphs
involving sensitive API call or sensitive API sequences, to assess whether these methods could
replace MBT for extracting malicious behaviors and inputting them into LLMs for malicious
behavior description generation.

Setup. The methods chosen for comparison include SeGDroid [27], S3Feature [33], and LSCDroid
[49]; they collect subgraphs involving sensitive API calls or sensitive API sequences to detect
malicious behaviors. For S3Feature [33], we directly used their open sourced code to extract the
corresponding subgraphs. While the others lack available code, we follow up the extraction methods
introduced in SeGDroid and LSCDroid and reproduce their implementation based on the sensitive
APIs used in MalScan [57] to extract the corresponding subgraphs and sequences, respectively.

Results. As shown in Table 3, the results demonstrate that the subgraphs and sequences extracted
by SeGDroid, S3Feature, and LSCDroid were too large to be directly processed by LLMs and further
used to generate a malware description.

Specifically, both SeGDroid and S3Feature generated excessively large number of subgraphs
despite pruning. On average, the subgraphs extracted by SeGDroid contained 7045.57 nodes and
11118.37 edges, including a huge number of irrelevant to malicious behaviors, making it difficult to
isolate critical behaviors. Similarly, S3Feature produced 945.53 subgraphs per APK and struggled to
directly distinguish malicious from non-malicious operations based on these subgraphs, leading
to unnecessary complexity and impracticality for generating behavior descriptions with LLMs.
LSCDroid, while extracting sensitive API sequences (averaging 1013.67 sequences with 5.156 APIs
per sequence), generates a large number of sequences, most of which are irrelevant. This abundance
of irrelevant sequences also limits LSCDroid’s ability to capture critical operations, similarly making
it challenging for LLMs to produce coherent and accurate descriptions of malicious behaviors.

The experimental results highlight several key issues with existing extraction methods of sub-
graph and sequences for generating malware description: (1) Overly large subgraphs or sequences:
These methods extract an overwhelming number of nodes, edges, subgraphs, and sequences, far
exceeding the capacity needed for LLMs to describe malware behaviors. (2) Overly much irrelevant
information: By focusing solely on direct and all relevant sensitive API calls, often producing
subgraphs or sequences filled with irrelevant or redundant information.

In contrast, 1.26 MBTs on average were extracted per APK, which is a fine-grained representation
of malicious behaviors that are specifically tailored for accurate interpretation. The number of MBTs
extracted by ProMal is more practical for generating malware description by using the LLMs. It is
important to clarify that this does not imply that each APK exhibits only 1.26 distinct malicious
behaviors. During the extraction process, if a malware sample includes multiple malware operations
that are closely linked, they are considered part of a single coherent malicious operation. For
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Fig. 15. The results of MBT extraction on testing dataset.

example, an MBT might simultaneously capture the leakage of a phone number, device information,
and SMS content.

7.1.2  Evaluation of MBT Extraction on Human-Labeled Testing Dataset. The ability of MBT
extraction plays a vital role in generating malware descriptions; therefore, we first investigated the
effectiveness of MBT extraction.

Setup. We used ProMal to extract MBTs from 105 malware samples, subsequently comparing
them with human-labeled MBTs from the same samples. For evaluating this comparison, we used
Precision, Recall, and F1-Score as evaluation metrics.

Results. As shown in Figure 15, out of the 122 manually labeled MBTs within these 105 malware
samples, ProMal successfully identified 110 of them but missed 12 cases. In addition, ProMal detected
22 MBTs that were not present in the human-labeled testing dataset. To further validate whether
these detected MBTs were false positives, we carried out an in-depth manual analysis. The analysis
revealed that 18 of these MBTs were indeed correct, while the remaining 4 were false positives. This
phenomenon highlights that despite experts can disclose the majority of malware behaviors in their
released security reports, some real malicious behaviors may still be overlooked. Such occurrences
further underscore the necessity and significance of automated malware profiling tools. Based on
the experimental results, ProMal demonstrates accurate identification of MBTs with a Precision of
96.97% (1112081148) and a Recall of 91.43% %), resulting in a corresponding F1-Score of 0.94.

We further analyzed the reasons for the false alarms. First, ProMal relies on static analysis to
collect code-level features, rendering it unable to interpret dynamically loaded classes [36]. Besides,
the implementation of malware operations is sometimes independent of API calls, such as by
calling a third-party library. We cannot extract complete APIs so far, causing a malware operation
matching failure, which then leads to 12 false negatives. The AndroidOSXavierAXM malware
evaded our detection by using a library to dynamically download and drop a payload. Lastly, the
actual functionality of some sensitive API calls is related to specific API parameters. ProMal may
fail to correctly distinguish MBTs due to the lack of parameter, thus resulting in four false positives.
For example, malware usually uses PackageManagerService.setComponentEnabledSetting() to hide
its icon (belongs to Activity). This API can be used to set the input component’s enabled state.
However, the component encompasses not only Activity but also Service, Broadcast Receiver,
etc. Thus, a false positive can occur when the actual controlled component is not necessarily an
icon. These challenges result in the non-extraction or incorrect extraction of MBTs. Despite these
challenges, ProMal maintains high consistency with the human-labeled testing dataset in MBT
extraction and contributes to generating accurate and detailed malware descriptions.
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Remark: We compared the MBTs extracted by ProMal with the human-labeled testing dataset to
quantitatively assess the effectiveness of MBT extraction. The F1-Score of MBT extraction using
ProMal reaches 0.94.

7.1.3  Evaluation of MBT Extraction by Comparing with XMal. To further assess the superiority
of ProMal in terms of the MBT extraction compared to state-of-the-art approaches, we compared
our work with XMal [54], which is an explainable ML-based approach that can classify malware
with high accuracy as well as explain the classification decision. Furthermore, the XMal has been
compared with the state-of-the-art explainable ML-based methods (i.e., Drebin and LIME [41]
which achieved better explanation results compared to work such as SHAP [28], Anchor [42], LORE
[17], and LEMNA [19] in the scenario of Android malware [12]) to demonstrate its effectiveness.
Additionally, in these works, only XMal provides malware descriptions for users based on the
identified key features. Therefore, we choose XMal as the state-of-the-art approach in this work.

Dataset. For this experiment, we used the same dataset from Section 7.1, which contains 105
samples with expert-labeled ground truth, as well as the 16 malware samples released by XMal.
These 16 malware samples were randomly selected from the top 16 malware families with the
largest number of samples according to the malware family tags provided by Drebin [4]. The ground
truth for these samples was provided through manual analysis by experts in XMal’s original work.

Setup. For the 121 malware samples (16 from XMal + 105 from our dataset, 121 samples in total),
we used ProMal to extract MBTs for each sample. For XMal, we obtained the trained model from the
first author of XMal and further deployed it based on its open source code under their experimental
configurations used in their paper. Unfortunately, the evaluation process encountered challenges
due to limitations in XMal’s output format: XMal did not provide results in the form of sequences of
malware operations, making a fair assessment based on MBT difficult. While XMal could produce
ordered descriptions of malware operations through predefined orders, directly comparing the
descriptions may result in erroneous results due to the semantic merging of similar features
inherent in XMal processing. To bridge this gap, we manually enhanced the granularity of XMal’s
descriptions of MBTs based entirely on their results. For instance, in the case of XMal, the description
“collect info on the device and send it to the remote server over the internet” was represented using the
semantics of “Collect IMSI/location,” generated by the feature TelephonyManager.getSubscriberld()
Thus, we corresponded it to the MBT “Get IMSI— Access the Internet, which is identical to the form
we extracted. Additionally, although the ground truth provided by XMal was verified by expert
reports, it is still limited due to concise descriptions, failing to fully reflect the actual MBTs. To
complement the ground truth, we manually reverse-engineered the 16 samples and analyzed the
MBTs based on XMal’s ground truth results. The results were cross-validated.

Results. After determining the corresponding MBTs for XMal (semantically identical to the XMal
results), we compared their performance on the 121 malicious samples and the results about the
comparison with XMal are accessible on our website [2]. Firstly, the experimental results for the
extraction of MBTs are shown in Table 4. ProMal outperforms XMal significantly in the extraction
of MBTs, achieving a F1-Score 0.35 higher than XMal (0.93 vs. 0.58). It is important to note that
the lower precision of XMal here does not conflict with the original accuracy in the paper of
XMal. This discrepancy arises because the evaluation criterion in the original paper of XMal is
the detection accuracy in malware classification, not the accuracy of detecting MBTs within the
malware. We further analyzed the reason for the low Recall in XMal. This is attributed to its approach
of extracting only partial key features to generate malicious behavior descriptions, leading to its
lack of comprehensive detection capability for MBTs of malicious behaviors.

For example, in the case of the BaseBridge0 sample, XMal failed to detect malware operations like
“Get installed app list, “Get mode,” and “Get Android OS version” compared to Ground Truth. This is
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Table 4. The Evaluation Results of MBT Extraction between ProMal

and XMal
Tool Precision Recall F1-Score
ProMal  95.03% (32.09%]) 90.90% (36.49%7) 0.93 (0.357)
XMal 62.94% 54.41% 0.58

The bold values in the table indicate the improvements of ProMal over XMal in
terms of Precision, Recall, and F1-Score for MBT extraction performance.

Table 5. Datasets for Automated Self-Updating

Publication Year Datasets Samples (Files)
2012 Gemome 1,200
2014 Drebin 5,560
2017 AMD 23,217
2022 GP Malware 1,133
# Total Number 31,110

due to the trade-off that XMal made between improving interpretability in classification models
and identifying more malware operations, which also indicates that accurately pinpointing MBTs
in malware is a significant challenge. In comparison, our approach performs better, achieving a
Precision of 95.03% and maintaining a Recall of 90.90%. We further analyzed the reasons that ProMal
cannot accurately extract all MBTs in several samples. In the case of sample Kmin0, which extracts
phone numbers by parsing SMS message contents rather than through system API calls, resulting
in it not being included in the MBTs. Meanwhile, distinguishing certain malware operations is
associated with specific API parameters as mentioned above, ProMal may struggle to precisely
determine which malware operation is occurring, leading to false positives. Despite these challenges,
our approach maintains significantly higher accuracy in MBTs extraction compared to XMal, laying
a foundation for providing clearer malware descriptions in profiling malware.

Remark: By comparing the results of MBT extraction between ProMal and XMal, it is evident
that ProMal extracts MBT more accurately and comprehensively (0.93 vs. 0.58 on F1-Score), laying
the foundation for a more detailed profiling of malicious behaviors.

7.2 Evaluation on Self-Updating and Graph Reasoning

7.2.1  Evaluation of the Expansion of BxKG through the Self-Updating. A key aspect of our method-
ology is its automated self-updating component, which is capable of detecting and integrating
malware operations, new features, and various types of relations into the existing knowledge graph.
This ensures the ongoing enlargement of the knowledge graph. The objective of this experiment is
to evaluate the expansion of BxKG before and after the update.

Dataset. To evaluate the effectiveness of the automated self-updating, we collected malware
samples from Genome [66], Drebin [4], AMD [51], and GP Malware [6] (excluding the 105 samples
used in the experiments in Section 7.1 ) which are the most commonly used malware datasets.
Table 5 illustrates that these datasets encompass 31,110 samples.

Setup. The widely-used malware datasets were utilized one by one based on their release date to
increase the number of update features, malware operations, and relations of the initial BxKG. We
randomly selected 1,100 malware samples from each dataset to cross-compare the experimental
results, where 1,100 is determined by the smallest dataset (i.e., GP Malware). As four datasets are
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Fig. 16. The update of BxKG.

utilized, the initial BxKG iteratively undergoes four consecutive automated self-updates, with each
subsequent update building upon the previous one. To monitor the self-update, we tracked changes
in the amounts of malware operations, relations between malware operations, and features about
malware operations after each update.

Results. We show the updated results of self-upgrading in Figure 16(a) and (b). In Figure 16(a), we
can observe that the initial BxKG consists of 58 malware operations, 119 features, and 46 relations
between two malware operations. However, when these four popular datasets (i.e., Genome, Drebin,
AMD, and GP Malware) are used to augment and update the initial BxKG, the scale of malware
operations, features, and relations on the knowledge graph has subsequently changed four times.
For instance, the initial BxKG gained 77 new features, 52 new malware operations, and 121 new
relations between malware operations following the first round of automated self-updating. As
shown in Figure 16, the scale of the graph keeps expanding during the whole process of self-
updating. As a result, the number of malware operations, features, and relations between malware
operations on the updated BxKG has increased significantly. After the last round of automated self-
upgrading using the GP Malware dataset, the number malware operations, features, and relations
has reached 347, 622, and 1,475 (including 554 relations between malware operations, 347 relations
between malware operations and APIs, and 574 relations between features), respectively. Note that
the number of features is significantly higher than the number of malware operations, as a malware
operation can be implemented by multiple APIs. Additionally, the part of graph nodes automatically
created from various datasets are displayed in Table 6. Columns 1 and 2 list various features for
different malware operations and their semantics. The third column provides the semantics of
malware operations summarized by LLM.

Remark: To enhance the profiling ability, we introduce an automated self-updating method
to expand BxKG, resulting in a significant increase in its scale. The approach successfully ex-
tracts practical MBTs from given datasets. Simultaneously, the effective updating and reasoning
capability of BxKG enhances the flexibility and reliability of ProMal.

7.2.2  Evaluation of the Contributions of Self-Updating and Graph Reasoning. To evaluate the
contributions of self-updating and graph reasoning of BxKG for extracting MBTs, we observed the
differences in results between the two groups (i.e., “before self-updating” vs. “after self-updating”
and “without graph reasoning” and “with graph reasoning”).

Dataset. The used dataset is the same as that used in Section 7.1.2.
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Table 6. Examples of the Newly Mined Graph Nodes after Automated Self-Updating

Code-Level Features

Features’ Semantics Obtained from D ion

Operations’ Semantics
Summarized by LLM

Self-Updating by the Dataset Genome

android/app/AlertDialog$Builder;—setTitle
android/app/AlertDialog$Builder;—setMessage
android/app/AlertDialog$Builder;—setPositiveButton
android/app/AlertDialog$Builder;—create
android/app/AlertDialog;—show

Set the title displayed in the Dialog.

Set the message to display.

Set a listener to be invoked when the button is pressed.
Create an AlertDialog to this builder.

Start the dialog and display it on the screen.

Show alter dialog

java/net/URL;—getHost
java/net/URL;—getPort
java/net/URL;—getPath

Get the hostname of this URL, if applicable.
Get the port number of this URL.
Get the path part of this URL.

Get url

Self-updating by the dataset Drebin

android/os/Build$VERSION;—SDK

Get the user-visible SDK version of the framework.

Get SDK version

java/lang/Class;—getField
581 java/lang/reflect/Field;—get
android/os/Build;—MODEI

Retrieve the object for a specified field.
Return the value of the field represented by this Field.
Get the end-user-visible name for the end product.

Get model ID

Self-updating by the dataset AMD

android/content/Context;—getResources
android/content/Context;—getPackageName
android/content/res/Resources; —getIdentifier
android/content/res/Resources; —getText

Return a resource instance for the application’s package.
Return the name of this application’s package.

Return a resource identifier for the given resource name.
Return a string value associated with a particular resource ID.

Get application name

android.permission.ACCESS_NETWORK_STATE
android/net/ConnectivityManager;— getActiveNetworkInfo
android/net/NetworkInfo;—getTypeName

Allow applications to access information about networks.

Return details about the currently active default data network.

Return a resource identifier for the given resource name.

Get network type name

Self-updating by the dataset GP Malware

android.permission. ACCESS_WIFI_STATE

Allow applications to access information about networks.

Return the Wi-Fi information. Get bssid
Return the basic service set identifier of the current access point.

android/net/wifi/WifiManager;—getConnectionInfo
android/net/wifi/Wifilnfo;—getBSSID

android/hardware/Sensor; —getName

Get the name string of the sensor.
Get the version of the sensor’s module. Get sensor info

Get the vendor string of this sensor.

android/hardware/Sensor;—getVersion
android/hardware/Sensor;—getVendor

Setup. (1) For the first group, we extracted MBTs by using the initial BxKG and then compared
them to the results obtained in Section 7.1.2 (i.e., MBT extraction results based on the updated
BxKG). We aim to investigate the differences in results between “before self-updating” and “after
self-updating” For the self-updating, we used four different kinds of widely used malware datasets
including Genome [66], Drebin [4], AMD [51], and GP Malware [6]. (2) For the second group,
we investigated which MBT extraction results benefited from the BxKG’s reasoning capability,
meaning that one experiment relied solely on all existing labeled MBTs in BxKG, while the control
group depended on all existing labeled MBTs as well as new MBTs reasoned from the original ones.
We aim to investigate the differences in results between “with graph reasoning” and “without graph
reasoning.”

Results. Table 7 shows that if only relying on the initial BxKG to extract MBTs on the same dataset,
the F1-Score is only 0.66, and the Precision and Recall are only 68.18% and 64.29%, respectively.
This indicates that knowledge obtained from a fixed and limited malware dataset cannot guarantee
the robustness of malware profiling. Furthermore, based on Table 7, we noticed that the self-
updated ProMal, without graph reasoning capability, resulted in a decrease of 13.52% and 9.12% in
Precision and Recall for MBT extraction, along with 0.11 F1-Score reduction. For instance, consider
the GhostTeam malware sample: ProMal extracted a MBT “Look for installed App— Access the
Internet— Download File— Install Apps — Launch Apps” Here, “Look for installed App— Access the
Internet” and “Access the Internet— Download File— Install Apps— Launch Apps” could each serve as
a MBT. However, our BxKG, based on a common node “Access Internet” and the actual control and
data dependencies between these two MBTs in the malware sample, deduced that they can actually
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Table 7. The Evaluation Results on Self-Updating and Graph Reasoning

Metrics Before After With Without Graph
Self-Updating Self-Updating Graph Reasoning
Reasoning
Precision 68.18% 96.97% (28.79%1) 96.97%  83.45% (13.52%))
Recall 64.29% 91.43% (27.14%1) 91.43% 82.31% (9.12%))
F1-Score 0.66 0.94 (0.287) 0.94 0.83 (0.11))

The bold values in the table represent the improvements in ProMal’s MBT extraction ability after self-updating with
the BxKG compared to before self-updating. Additionally, the changes in ProMal’s MBT extraction ability are shown
when graph reasoning of BxKG is not utilized.

function as one new MBT. In other words, this complete MBT involves checking for the installation
of specified (antivirus) software, then connecting to the network, downloading, installing, and
running malicious software. Through such graph reasoning capability, we can uncover intricate
relations between seemingly disparate MBTs within the malware, aiding in the identification of
previously undetected MBTs, while also leading to more accurate malware profiling. Although the
proportion of MBTs obtained through this graph reasoning capability appears relatively small in
the results, this is partly due to the limited size of our testing dataset. We believe that testing on a
more larger dataset would yield more MBTs through the graph reasoning capability.

Remark: Our evaluation showed the real impact of self-updating and graph reasoning on MBT
extraction. We also established the necessity of knowledge graph construction, especially its
reasoning ability for MBT extraction.

7.3 Ablation Study

Besides the effectiveness evaluation above, we further conducted an ablation study to highlight
the effectiveness of individual components in the MBT extraction, including (1) completion of CG
(Section 5.1.1), (2) analysis of control flow, and (3) analysis of dataflow.

Dataset. The used dataset is also the same as that used in Section 7.1.2.

Setup. To thoroughly evaluate the efficacy of each component, we systematically removed each
of them from the MBT extraction one by one. Our full approach, incorporating all components,
served as the baseline for comparison. This approach allowed us to compare the performance of
each component with and without its inclusion, thereby assessing their individual impact on the
overall effectiveness.

Results. Each component’s effects are shown in Table 8, with the most optimal results achieved
when all components are combined. The following will elaborate on the results of different compo-
nents in the ablation study.

7.3.1  Completion of CG. Table 8 shows that without CG completion, the Recall decreases by
22.86%. In particular, the utilization of the completion of CG significantly reduces false negatives.
When comparing the results between applying CG completion and not, we found that over 22% of
the MBTs leverage specific Android architecture features, such as asynchronous calls, life-cycle
callbacks, and even inter-component collusion, to execute malicious payloads. This observation
hints at a potential strategy used by malware developers to avoid detection: they may divert payload
execution from the main application execution flow, potentially complicating call paths to evade
detection mechanisms.
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Table 8. The Impact of the Three Components on the MBT Extraction

CCG CF DF Precision Recall F1-Score
vV Vv Vv 96.97% 91.43% 0.94
X vV 96.00%(0.97%]) 68.57% (22.86%]) 0.80 (0.14])
vV x Vv 21.02%(75.95%|) 91.43% 0.34 (0.60])

VoV X 90.15%(6.82%])  90.84 (0.59%|)%  0.90 (0.04))

In this table, CCG, CF, and DF, respectively, stand for completion of CG, Analysis of
control flow (CF), and Analysis of dataflow (DF). The bold values in the table represent the
difference in performance compared to the best results, which are achieved when all three
components—CCG, CF, and DF—are used.

7.3.2  Analysis of Control Flow. Table 8 reveals that the Precision decreases by 75.95% when
control-flow analysis is not applied. This demonstrates the importance of control-flow analysis,
specifically how the absence of API call sequence information might affect the accurate identification
of MBTs. The relations between different malware operations are crucial for MBT construction
and enriching semantic information. Therefore, obtaining API call sequence information through
control-flow analysis is particularly crucial in MBT identification and extraction.

7.3.3  Analysis of Dataflow. Table 8 illustrates a 6.82% improvement in the Precision rate upon
incorporating dataflow analysis. However, the effectiveness of the dataflow analysis in improving
the performance of our approach is not as pronounced as expected. We analyzed the reasons
behind this. In the manual analysis of malware, it is observed that if APIs that may execute
malicious behavior are control-flow related, they are likely to execute malicious behavior together.
Nevertheless, for APIs involving information leaks, applying dataflow analysis indeed yields more
accurate results. For instance, in the BKotlindHRX malware sample, without dataflow analysis,
we would identify a MBT of “Get IMSI—Send SMS.” Dataflow analysis filters out this MBT due
to the absence of data transfer, which aligns with the human-labeled testing dataset. Through
manual analysis, we found that this APK simply sends a text message after retrieving IMSI, with
the message content unrelated to the retrieved data.

Remark: The ablation study demonstrated that all three components contribute positively to the
results on MBT extraction, with analysis of control flow making the most significant contribution,
followed by completion of CG, and finally analysis of dataflow.

7.4 Practicality Evaluation of Description Generation

To verify the advantages of our MBTs in assisting users in understanding why malware is classified
as malware, a user study was conducted to explore the respondents’ assessment of the malware
descriptions generated by ProMal.
Dataset. We used 16 malware samples that have malware descriptions in XMal for this experiment.
Setup. The malware descriptions of these 16 samples are used to design our user study. Fur-
thermore, we configured the following settings to assess the readability of the generated malware
descriptions:

—XMal: We directly leveraged the malware description results generated by XMal as presented
in their paper.

—Baseline: We used code-level features corresponding to all MBTs as inputs to the LLM.

—ProMal: We extracted all MBTs along with their corresponding code-level features, feeding
them into the LLM to produce corresponding interpretations.
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Table 9. Taking Malware MobileTx0 as an Example, Three Types of Malware Descriptions will be Read and
Rated According to Their Readability in the Study

Malware Description Score (1-10)

Type 1 | This malicious program continues to request sensitive permissions, including reading phone 6
state (READ_PHONE_STATE) and sending SMS (SEND_SMS). It utilizes key Android APIs, such

as Telephony- Manager.getSubscriberId() method to obtain the device’s subscriber

identifier (IMSI), URL. openConnection() method for network communication, and

SmsManager . sendTextMessage () method for sending SMS. These actions involve potential

privacy and security risks, including the disclosure of user information and possible misuse

for malicious activities.

Type 2 | This malware initially acquires the IMSI (International Mobile Subscriber Identity) using 9
the READ_ PHONE_STATE permission and the TelephonyManager.getSubscriberId()
method. Subsequently , it transmits this information to a remote server over the

Internet by utilizing URL . openConne- ction() method. Following this , the malware

proceeds to send SMS messages through the SEND_ SMS permission and SmsManager .
sendTextMessage () method. This sequence of actions may give rise to significant security

risks.

Type 3 | Send SMS messages to premium-rate numbers, collect info on the device, and send it to a 3
remote server over the Internet

In this case, “Type 1” denotes baseline, “Type 2” refers to ProMal, and “Type 3” denotes XMal

Thus, each malware sample has three different styles of interpretations. To conduct our ex-
periment, 30 participants with domain expertise from industrial companies and universities are
recruited via email. A minimum of 1 year of experience in Android mobile security is required for
all participants. Within the pool, 10% people represent industry professionals, while the remaining
are affiliated with academic entities.

The survey started with a concise introduction. We informed participants that our task was
to measure the readability of two distinct categories of description. To statistically evaluate the
quality of the generated descriptions, we specified a scoring range of 1 to 10, with a higher score
indicating that the interpretation of malware in this manner makes it easier to understand and
accept. Participants were required to compare and rate three malware descriptions. Throughout
the survey, the name of XMal, baseline, and ProMal were randomly replaced by “Type 1,” “Type 2,”
and “Type 3” to reduce bias. Table 9 illustrates a part of the survey. As well, we also investigated
with respondents their preferred style of description and why. The survey took an average of 25
minutes to complete.

Results. Finally, 30 valid survey results were collected. The survey results show that descriptions
generated by ProMal have an average satisfaction score of 9.67, while descriptions generated by
XMal and baseline have an average score of 3.37 and 6.32. Furthermore, 100% of respondents
indicate that they prefer ProMal’s description. In particular, these descriptions interpret the specific
process that may cause malicious attacks, which is easier to comprehend. Furthermore, it is logical
and easier to form a MBT in the reader’s mind, whereas another type of description is a patchwork
of behaviors, making it difficult for readers to grasp the target.

Remark: The user study indicates that 100% of respondents prefer the description generated by
ProMal with an average satisfaction score of 9.67, which can generate a more human-readable
description based on the extracted MBTs as well as the corresponding code-level features.
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8 Discussion
8.1 Special Case

During our experiment, we found that SendPay malware in Drebin attempted to monitor and
send SMS messages, but neither XMal nor ProMal detected this malware operation. Particularly, it
is confirmed to send messages after being scanned with over 70 different antivirus scanners by
VirusTotal [47], an online service widely used by researchers to identify security threats. Further
analysis finds that SEND_SMS, dangerous and hard-restricted permission, is absent from SendPay’s
AndroidManifest.xml file, leading to the failure of malware operation detection using ProMal. This
indicates that, by bypassing permissions, malware can avoid detection, which is why the runtime
permission model is introduced in Android 6.0 (i.e., API level 23) and higher. Therefore, the number
of such cases results in a limited impact in our experiment 7.1.2 when analyzing malware with
higher Android versions.

8.2 Limitations of ProMal

Despite comprehensive experiments demonstrating advancements in malware profiling, the current
version of ProMal still exhibits certain limitations.

(1) One limitation of our method is the relatively small size of the dataset, despite it being sourced
from 105 distinct malware families, which ensures a high degree of diversity. The limited dataset
size is primarily due to the scarcity of high-quality, manually analyzed reports-a common challenge
in Android malware behavior analysis. Constructing such datasets demands substantial expertise
and effort, given the complexity and nuanced nature of behavior analysis in this domain. To address
this, future work will focus on leveraging semi-supervised or unsupervised learning to efficiently
generate additional high-quality labeled data. We also plan to collaborate with domain experts
to expand and refine the dataset, ensuring the broader applicability of our method to real-world
scenarios. (2) As mentioned in the experiments, ProMal faces its initial limitation in handling
dynamically loaded classes [36]. However, our experiments revealed that the prevalence of malware
utilizing dynamically loaded classes is limited. Moving forward, we aim to integrate dynamic
information into BxKG to enhance its comprehensiveness. (3) The third limitation arises from our
observation that some malware is able to leverage third-party components to execute malicious
behaviors, including third-party libraries and cross-language libraries (i.e., .so files). Currently,
we lack the capability to handle such cases. Similarly, within representative testing datasets, we
found that cases of this nature are relatively very rare. Nevertheless, to enhance the robustness
and reliability of BxKG, we plan to incorporate the influence of third-party components in the
future. (4) The fourth limitation is relevant to the parameters of APIs. API calls play a critical role in
identifying malware operations. Sometimes the parameters of API calls determine their intention.
For instance, the API PackageManagerService.setComponentEnabledSetting() can control the enabled
state of the input component. When the input is the MainActivity of malware, the given Activity
will be disabled to hide the application icon, which is a common malware operation. The input
components, however, will vary according to the actual situation, which may involve Services rather
than Activities, i.e., the input of this APl is a variable. As a result, ProMal is unable to determine
whether the use of this API is malicious or benign due to the lack of automatic analysis of variable
parameter pointing content. We also plan to incorporate this analysis capability into our future
work. (5) The final limitation stems from the use of static analysis tools such as Androgurad and
FlowDroid. Despite our best efforts to enhance the capabilities of these tools, such as substantially
strengthening the CG, we still encounter limitations inherent to the used static analysis tools. We
will continue to address potential impacts on profiling results arising from limitations imposed by
static analysis tools.
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9 Related Work
9.1 Android Malware Detection

Researchers from both industry and academia have developed various methods for malware
detection, including signature-based approaches [11, 14, 67], behavior-based methods [45, 50,
58], and program analysis-based techniques [5, 16, 24, 52]. Currently, machine learning-based
techniques [3, 4, 15, 39, 55], particularly deep learning [22, 30, 59, 63], have become promising
solutions for malware detection and classification because they can defend against zero-day attacks
and potentially keep up with the creation and evolution of malware. For example, Aafer et al.
[3] trained a KNN classifier by learning relevant features extracted at the API level, achieving up
to 99% accuracy and as low as 2.2% false positive rate. Wu et al. [55] used a k-nearest neighbors
classification model with dataflow APIs as classification features to detect Android malware. Other
machine learning algorithms, such as SVM [4], Random Forest [39], XGBoost [15], and Least
Square Support Vector Machine [29], have also been applied to malware detection and proven
effective. Regarding deep learning, Yu et al. [63] proposed using Artificial Neural Networks to
train malware detection models. McLaughlin et al. [30] designed a malware detection system
using deep convolutional neural networks to learn raw opcode sequences from disassembled
programs. Kim et al. [22] utilized multimodal deep learning methods to learn various features,
maximizing the advantages of different types of features. Xu et al. [59] applied Long Short Term
Memory networks on the semantic structures of Android bytecode and used multilayer perceptrons
on XML files to efficiently identify malware. In addition, Li and Li [23] combined permissions,
components, system calls, and IP addresses through adversarial training to improve the robustness
of their malware detection model. Sahin et al. [44] proposed a multiple linear regression-based
malware detection model that used permission features and enhanced performance by employing
ensemble learning, particularly bagging (majority voting). Rustam et al. [43] developed an image-
based malware detection system using transfer learning and machine learning algorithms. Their
hybrid model, which combined VGG-16 and ResNet-50, achieved 100% accuracy on 25 malware
classes in the Malimg dataset by sequentially extracting hybrid feature sets through a stacking
approach.

While machine learning and deep learning methods have significantly improved malware de-
tection accuracy, they primarily emphasize classification performance over interpretability. These
methods can detect whether an application is malicious but fail to explain why it is classified
as such or what specific malicious behaviors it exhibits. This stems from limitations in machine
learning and deep learning models, such as their black-box nature [40] and the risk of models
learning irrelevant features like temporal variances in datasets [26]. ProMal aims to bridge this
gap by generating clear and precise descriptions of malware behavior, enabling users to not only
identify an application as malicious but also understand the specific malicious actions it performs,
addressing the interpretability shortfall in existing approaches.

9.2 XAl-Based Malware Profiling

In recent years, machine learning-based Android malware detection has shown excellent perfor-
mance with an accuracy achieving 99% [26]. However, these approaches are usually black-box
models, lacking interpretability, and making users uncertain about the results. To address this,
several interpretation approaches have been recently proposed, such as Drebin [4], LIME [41],
LEMNA [19], and XMal [54], but they still possess limitations, as we highlighted in the introduction.
Apart from the above work, some survey papers [18, 25] also conducted studies on interpretability.
However, overall, they cannot accurately interpret the output of models at a fine-grained level in
Android malware detection. To solve this problem, we propose ProMal, an innovative approach for
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profiling Android malware, utilizing the concept of MBT to automatically generate fine-grained
malware descriptions for enhanced interpretability and comprehension. Meanwhile, we chose XMal
according to the interpretable performance in the scenario of malware profiling [12] as the baseline
method and thoroughly compared it in Section 7.1.3.

9.3 Android Description Generation

A series of efforts have been made to generate descriptions for Android apps. WHYPER [34] is
the pioneer in utilizing natural language processing (NLP) technology to interpret permis-
sion requests. AutoCog [38] goes a step further by associating descriptions with permission lists
using NLP and machine learning algorithms. DescribeMe [65] analyzed internal program logic
and translated security-sensitive code patterns into natural language scripts. Wu et al. proposed
prescription [56], considering user preferences, and focal points to craft distinctive descriptions
tailored to various user types. DescribeCTX [62] introduced a context-aware description synthesis
approach, addressing privacy concerns in apps.

Existing works, such as DescribeMe [65] and DescribeCTX [62], generated sensitive behavior
descriptions based on code analysis by using all sensitive APIs that are used in the app. Their goal
is to enhance users’ understanding of sensitive behaviors across the entire app market. This leads
to, in the context of malicious behavior analysis, existing works extracting sensitive behaviors
as sequences of all sensitive APIs, resulting in a high rate of false positives for the scenario of
malware, since sensitive behaviors clearly do not necessarily mean malicious behaviors. Moreover,
DescribeMe focuses solely on data-dependency-related behavioral operations, failing to fully
capture extensive malicious behaviors and thus limiting its descriptions. For example, in Wu et
al’s work, privilege escalation (e.g., gaining ROOT access on the targeted system, requesting user
administration privileges) and hiding icons are considered malicious behaviors, which could not be
described by DescribeMe. In contrast, our work is specifically focused on malware, concentrating
on the extraction and description of MBTs that clearly indicate malicious behaviors in Android
malware. Additionally, our approach goes beyond data dependency to capture a broader range of
malicious behaviors, leveraging the comprehensive definition of MBT.

Additionally, existing approaches for extracting sensitive behaviors based on fixed sensitive APIs
or key features, cannot adapt to new types of sensitive behaviors, especially as malware evolves
over time by using similar functionalities but different APIs to evade detection. As a comparison,
ProMal stands out, by utilizing a self-updating knowledge graph of malicious behaviors, allowing it
to update and reason novel MBTs from extensive malware datasets. Moreover, ProMal can adapt
to the continuous updates of API levels by dynamically expanding the range of sensitive APIs
from official documents to capture evolving patterns of MBTs. Last but not least, ProMal leverages
the versatile updating and reasoning capabilities of the knowledge graph, providing a substantial
advantage in constructing new MBTs as well as human-readable descriptions demanding more
precise and fine-grained information. This enhancement significantly contributes to the efficacy of
malicious behavior profiling.

10 Conclusion

In this article, we introduced ProMal, an innovative approach to generating a human-readable
malware description by profiling malicious behavior trajectories of malware based on a self-updated
knowledge graph. The graph is scalable and can help provide fine-grained MBTs of malicious
behaviors, laying the foundation for a more precise malware description. ProMal shows superior
performance in understanding what and how malware accomplishes harmful tasks.
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